CHAPTER 25

NUMERICAL SIMULTION OF INELASTIC,
FRICTIONAL PARTICLE-PARTICLE
INTERACTIONS

0. R. Walton

25.1 INTRODUCTION

Understanding the flow behavior of particulate suspensions as well as
pneumatic and dry granular flows is important for such diverse applications as
in-plant and long-distance transport, manufacturing of ceramics, casting of
solid-fuel rocket propellant, preparation of pharmaceuticals and a wide variety
of manufacturing, food, chemical and mineral processing operations. Current
lack of understanding makes scaling from laboratory bench-top prototype
operations to large-scale commercial plants more of a “cut-and-try” art, than a
rational design process. New approaches that specifically take into account
the micro structural nature of these materials have the potential to provide us
with the ability to predict their flow behavior.

The focus of this volume is suspensions and multiphase flows,
emphasizing how suspended solid particles affect the hydrodynamic stresses
in the fluid. In many situations, however, direct contacts between the particles
themselves strongly affect the stresses in the fluid-solid mixture and the
interactions with boundaries. Hydrodynamic lubrication forces theoretically
will prevent smooth spheres in suspension from coming in physical contact
with each other, since such forces diverge as surfaces approach each other.
However, depending on the surface roughness and the inertia of the particles,
the density and viscosity of the fluid media, and on the deformation rate,
actual physical contact between real particles is not only possible, but may be
highly likely during dynamic flow conditions. In gas fluidized systems most
particles exceeding a few microns in diameter are likely to experience particle-
particle or particle-surface contacts. Similarly, in aqueous (or other similar
liquid-) solid systems, particles exceeding a few 10's of microns in diameter
are likely to experience some particle-particle contacts if the deformation rate
is significant. Real particles come into contact with each other because their
surface roughness exceeds the theoretical gap width that would produce a
large enough hydrodynamic lubrication force to prevent such a contact.
Leighton (1992) discusses this point further in Chapter 6 of this volume. At
high deformation rates particle-particle collisions may even dominate the
behavior of many multiphase systems. Bagnold (1954) termed the regime of
flows where particle collisions dominate the behavior the grain-initeria
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regime. Ahn and Brennen (1992) discuss Bagnold’s criteria in Chapter 7 of
this volume. After a brief review of methods used to calculate the behavior of
fluid-solid systems this chapter discusses in detail various numerical and
theoretical models of particle-particle interactions and the resulting behavior of
assemblies of particles undergoing such interactions. Subsequent chapters
(i.e., Brady, 1992; Kim and Fuentes, 1992; Prosperetti and Sangami, 1992)
discuss various approaches being taken to numerically simulate the behavior
of suspensions, specifically including the hydrodynamic interactions carried
by the interstitial fluid.

25.1.1 Stress Tensor in Fluids

The momentum flux density tensor in an ideal fluid is given by

[I=pl +puu (25.1)
where pu is the momentum of a unit volume and p is the equilibrium
pressure. The term puu represents the momentum flux due to the bulk
motion of the fluid. For a viscous fluid a term, -T°, which gives the
irreversible “viscous” transfer of momentum in the fluid (from regions of high
momentum to regions of low momentum), must be added to the total
momentum flux density. The stress tensor, T, which is that part of the
momentum flux tensor that is not due to the bulk fluid motion (i.e., the
negative of the pressure tensor) then is given by (Landau and Lifshitz, 1959)

T=pI+T . (25.2)
For a Newtonian fluid the stress tensor has the form (Hoover, 1991)
T=(-p + A V- +n(Vu + Vu) (25.3)

where the equilibrium pressure p and the two viscosity coefficients 1 and A all
depend on the local thermodynamic state, and the superscript ¢ indicates the
transpose of the velocity gradient tensor Vu. The “bulk” viscosity, which
gives the excess pressure in compression and excess tension in expansion is

Mv=A+(2/3)n. (25.4)

If the fluid flow is incompressible, then V-u = 0, so the bulk viscosity does
not influence the flow, and the stress tensor simplifies to

T=-pI +1n(Vu + Vu). (25.5)
25.1.2 Stress Tensor in Particulate Systems

For a system of particles with no interstitial fluid, interacting via pairwise
additive forces fjj, the instantaneous stress tensor averaged over the volume
V,is glven by (Evans 1979; Irving and Klrkwood 1950)

Tp V Zm,(v, u)(vi-up) + 5 V Z fij rjj (25.6)

where the first term represents the momentum camed by the particles
themselves in their fluctuations about the mean velocity field u. This term is
often called the kinetic contribution to the stress. The subscript i on u
indicates the value of the mean field at the instantaneous location of the ith
particle. The velocity and mass of the ith particle are given by v; and m;,
respectively. The second term, called the potential contribution, represents
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the rate of momentum transfer from one particle to another due to the
interaction force f;j, where r;j is a vector from the centroid of the ith particle to
the centroid of the jth particle. The sum is over all interacting near neighbors.
The first term is symmetric but the second term can include non-symmetric
components if the interaction force is not central (Evans, 1979). If the
Interactions between particles are approximated by instantaneous collisions,
then the last term is replaced by an average of momentum transfers due to
collisions between particles (Chapman and Cowling, 1952).

25.1.3 Approximate Stress Tensor in Suspensions

. _In suspensions the stress distribution around each suspended particle is
influenced by all other particles in the system. The stress tensor, T, of a

?lllgg%r)lsion of rigid particles in a Newtonian medium is given by Batchelor

T=-pT+n(Vu+Vu) +3 % [ Ton(rr)dr (25.7)
5

where T is the local stress tensor. The summation is performed over all
particles i contained in the reference volume V. The surface of the ith particle
is denoted by s;. The vector r; indicates the center of the ith particle and n
denotes the normal vector.

To be able to calculate the above integral, the stress distribution in the
fluid surrounding the particles must be known. In a very dilute suspension
the flow field and the stress distribution around a spherical particle can be
calculated exactly. In the case of a concentrated suspension some
approximations usually need to be made. The most simplifying
approximation, applied in the case of concentrated suspensions where the
particles nearly touch each other, is that the stress in the interstitial holes
between particles is negligible compared to the stress generated in the narrow
gaps separating particles (i.e., only the nearly pairwise additive lubrication
forces need be considered). The particle contribution to the stress tensor Tp
thus becomes (Goddard, 1977; van den Brule and J ongschaap, 1991)

= 1
T, = % Z fij R;j (25.8)
i>j

where fj; is the lubrication force acting between the ith and Jjth particles and
the summation is carried out over all near pairs.

For specific configurations of particles, estimates of the effective viscosity
of a suspension have been made assuming that only the normal direction
portion of the lubrication force is important (Frankel and Acrivos, 1967) or
including both the normal and shear components (van der Brule and
Jongschaap, 1991). The latter compared favorably to an exact calculation of
the viscosity of a periodic cubic array of spheres, taking into account all
hydrodynamic interactions (Nunan and Keller, 1984) indicating that, at least
in a cubic configuration, the lubrication forces do dominate the behavior at
high concentrations.



Inelastic Frictional Particle-Particle Interactions 887

25.1.4 Numerical Simulation of Complete Hydrodynamic
Interactions

25.1.4.1 Quasi static Deformations -- Stokesian Dynamics

For particles suspended in a viscous fluid at zero Reynolds number (i.e.,
Stokes) flow the linearized hydrodynamic equations can be solved throughout
the space occupied by the fluid (and the particles). A set of “induced” forces
can be applied to the fluid at the “surfaces” of the suspended particles to
reproduce stick boundary conditions. The crux of the technique known as
Stokesian dynamics is the computation of the induced forces that will
reproduce the desired fluid velocity field that matches the surface motion of
the translating, rotating particles. For spherical particles this is accomplished
numerically by multipole moment expansions of particle-surface force
distributions. In theory, any desired accuracy is obtainable by simply using
higher moment approximations. In practice, the technique becomes
computationally unwieldy as forces diverge. Significant efficiency is gained
for high concentrations by calculating the short range lubrication forces
between nearest-neighbor particles as separate pairwise forces; effectively
utilizing the multipole expansion solutions primarily in the fluid outside the
small “gap” regions. The method does not include inertial effects, and thus,
is able to successfully avoid contacts or overlapping of spherical particles
through the inclusion of diverging hydrodynamic lubrication forces. Brady
(1992) discuses this method in detail in the next chapter; also, see Ladd
(1990).

The Stokesian dynamics method generally has limited flexibility and is
thus, difficult to extend to arbitrary particle shapes or to complex flow
geometries. Also, the numerical algorithms usually scale as the square or
even the cube of the system size, making simulations of large systems
intractable. An alternative approach, with the potential to handle larger
systems and more complex flow situations, is to utilize a lattice-gas cellular-
automata model for the fluid motion combined with a moving-boundary
algorithms for the suspended particles.

25.1.4.2 Low Reynolds Number Flows -- Lattice Gas Models

In a lattice-gas fluid space is filled with a fixed lattice of “sites” of which
~50% are “occupied” by lattice-gas (fluid) “particles”. These particles move
at fixed speed to adjacent sites and “collide” with other lattice-gas particles via
micro-rules that conserve momentum and energy. Averages of velocities and
concentration over several lattice sites reproduce Navier-Stokes fluid behavior
(Frisch, et al., 1986).

In suspension models using this approach a moving solid body (i.e., a
suspended particle) interacts with the lattice-gas via additional micro-rules
which represent the collisions of the lattice-gas particles with the surface of
the solid body (Ladd and Frenkel, 1990). On average these rules force the
fluid next to the solid particle to move with the local velocity of the particle
surface, modeling a hydrodynamic stick boundary condition. As a
consequence, the lattice-gas particles exert forces and torques on the
suspended particles which are then used to update the particle velocities and
angular velocities, according to the masses and moments of inertia of the solid
particles.

These models include inertial effects and appropriately handle lubrication
force divergence for approaches up to a small fraction of a lattice cell spacing.
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For dynamic situations and very close approaches, however, the approximate
lubrication forces of the lattice-gas model are insufficient to prevent occasional
overlapping of the particles. In such situations Ladd and Frenkel ( 1990)
employ elastic hard-sphere (molecular dynamics) collision operators to
prevent such overlaps. The method has the flexibility to include more
complex interaction models for particle-particle collisions, such as the models
described later in this chapter. Full hydrodynamic coupling between the fluid
and the suspended particles is achieved and good agreement has been obtained
with existing data on dissipative and fluctuating hydrodynamic interactions
(Ladd, 1991). The method is computationally limited to flows with relatively
high effective viscosities for the fluid, and thus, can only be applied to
relatively small Reynolds' number flows.

25.1.4.3 Dynamic Flows -- Lattice Boltzman Models

Another method currently under development for suspensions (Ladd,
1992) is to utilize a lattice-Boltzman equation for the fluid (McNamara and
Zanetti, 1988; Higuera, et al., 1989; McNamara and Alder, 1992), with
coupling between the phases handled analogous to the lattice-gas models. In
this method the computational domain is divided into zones by a regular three-
dimensional mesh; at each node a density of “fluid-like” particles is defined
moving in a set of 18 lattice directions, corresponding to the nearest and
second nearest neighbors of a simple cubic lattice. The population densities
are a discretization in velocity space of the one-particle Boltzman distribution
function. The hydrodynamic fields, mass density, momentum density and
stress, are obtained directly as moments of this discrete distribution function,

The method was originally derived from lattice-gas models; however, it
has several advantages over them. There are many fewer constraints on the
choice of collision operators, allowing high Reynolds' number flows to be
modeled. Recent lattice Boltzman simulations of a Kelvin-Helmholtz
instability, at a Reynolds' number of 10000 were in near perfect agreement
with a state-of-the-art Navier-Stokes solver (McNamara and Alder, 1992).
The large statistical fluctuations present in a lattice- gas are absent in the lattice-
Boltzman equation; thus, spatial or temporal averaging of the fluid dynamics
is no longer necessary. The divergence of the lubrication forces is expected to
be valid for gaps down to a fraction of a lattice grid spacing as it is for lattice-
gas models. For closer approaches, or highly dynamic collisions, some
additional particle-particle collision operator will need to be included.

The remainder of this chapter will discuss various approaches for
modeling particle-particle interactions and/or collisions. To date macroscopic
particle interaction models have been used primarily in simulations or theories
of dry granular flows; however, they could also be added as supplementary
collision operators for lattice-gas or lattice-Boltzman simulations of multi-
phase flows. In the limit that the viscous effects of the fluid are negligible
(i.e., either Bagnold's grain-inertia regime, or extremely slow deformation
where the gradients in velocity are small) the particle contribution to the stress
tensor can dominate the stress and the deformation behavior. In truly quasi
static situations with gravity and boundaries, particles will eventually settle to
the point of physical contact with each other and the container walls. In such
situations the continuous-contact soft-particle models discussed below could
be used to prevent particles from “overlapping”.
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25.2 SIMULATION OF PARTICULATE SYSTEMS

Direct numerical simulation of particulate motions has been a viable
research tool for the study of the macroscopic behavior of assemblies of
molecular-scale particles for over 3 decades. The molecular-dynamics
literature is extensive, with literally thousands of papers. Several recent
books on the subject cover not only the history (Ciccotti and Hoover, 1986;
Ciccotti et al., 1987) but also the methods (Hockney and Eastwood, 1981;
Allen and Tildesley, 1987). Allen and Tildesley provide a thorough
discussion of the details of the numerical techniques and “tricks of the trade”
and include over 600 references. Also, Hoover (1991) discusses both
classical statistical mechanics and modern computational approaches
providing information on basic algorithms and advanced non-equilibrium and
constrained-dynamics techniques.

Before any numerical simulation of particulate motion can be undertaken,
the nature of the particle-particle interactions must be specified. In their
simplest form particle-dynamics simulations consist of a set of “hard-spheres”
following piece wise-linear trajectories between isolated momentum-
conserving collisions. More complex simulations numerically integrate
Newton’s equations of motion to determine the trajectories as particles interact
via short or long range forces. In general, the hard-sphere models are con-
siderably faster than continuous force models. At high densities, however,
hard-sphere collision frequencies increase dramatically and, when inelastic
particles are simulated, care must be exercised to avoid situations where
clusters “collapse” to a zero vibrational energy state wherein collision
frequencies diverge as relative velocities vanish.

On a molecular scale a wide variety of energy-conserving force models
have been utilized, ranging from repulsive power-law potentials to empirical
functions approximating measured or ab initio calculated potential functions.
The major difference between these molecular-scale interaction models and
models used for macroscopic interactions is that, in a macroscopic collision, a
portion of the incident kinetic energy is converted into either plastic work,
deforming the particles’ surfaces, or into molecular-scale thermal energy,
during the collision process. As a consequence, inelastic (energy dissipating)
collision models are employed to simulate macroscopic interactions. These
can be rigid-body models or deformable ‘soft’ particles. For continuous-
force ‘soft’-particle models the energy absorption can take the form of a
viscous damping or a hysteretic force-displacement path, in either the normal
or tangential direction, or in both directions.

25.3 MACRO-SCALE ELASTIC AND INELASTIC CONTACTS
25.3.1 Hertzian Contacts and Impacts of Elastic Spheres

Hertz solved the linear elasticity equations for elastic bodies in contact
(Hertz, 1881; Timoshenko and Goodier, 1970; Johnson, 1985). The
resulting quasi static force displacement relation for displacements along the
line of centers between two contactmg, identical elastic spheres is given by

F =5 —r 302 (25.9)
1-v2

where E is Young’s modulus, v is Poisson’s ratio, R is the spheres’ radius,
and o is the relative displacement after initial contact, (i.e., the “virtual”
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overlap of the two original spherical surfaces as the elastic spheres deform at
the point of contact).

25.3.2 Elastic Spheres: Theory, Experiments and Finite Element
Calculations of Impacts

It has been experimentally, theoretically and calculationally verified that,
for low velocity normal-direction collisions between two elastic spheres, very
little energy goes into acoustic or other vibrational internal energy inside the
spheres; almost all of the initial kinetic energy is recovered in the post-
collisional velocities. Walton and Hagen (1984) calculated the response of an
elastic sphere impacting a rigid wall using the DYNA2D finite element code
(Halquist, 1978). Figure 25-1 shows representative zoning for those
calculations, which are equivalent to a head-on collision between two identical
spheres. They found that if the yield strength is not exceeded in the contact
region of the spheres, then 99% or more of the initial kinetic energy is
recovered. For spheres of nearly equal size, the duration of the contact is
usually any times the sound transit time across one of the spheres, so that the
assumptions of Hertz’s quasi static analysis are satisfied. The same finite
element calculations confirmed that, for collisions between elastic spheres, the
contact time varies nearly as the inverse 1/5 power of the relative impact
velocity -- as would be predicted by the Hertz contact theory if Equation 25.9
represents the force-displacement behavior of a nonlinear spring acting
between two rigid spheres (Timoshenko and Goodier, 1970),

5V2np 1-v2\25 p
n
where T is the contact time, p is the density of the spheres and v, is the

incident relative velocity in the normal direction.

(25.10)

(ke 3" H

FIGURE 25-1 Representative zoning used in dynamic finite element
calculations of elastic and elastic-plastic spheres impacting a rigid wall
(Walton and Hagen, 1984).
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FIGURE 25-2 Calculated contact time for impacts of elastic spheres,
(Walton and Hagen, 1984), and measured contact times, for impacts of rods
with spherical ends (Sears, 1908), compared with Hertz theory predicted
inverse 1/5 power dependence on incident velocity, solid lines.

Figure 25-2 shows the variation of contact time with impact velocity
obtained in elastic finite element model calculations (Hagen and Walton,
1984), in experimental impacts of rods with spherical ends (Sears, 1908, as
quoted in Goldsmith, 1960), and Hertz' contact theory (e.g. Equation 25.10).
As can be seen, both the experiments and the finite element calculations are
reasonably close to Hertz’ contact theory, indicating that the quasi static
assumptions of that theory are nearly satisfied in these elastic collisions.

25.3.3 Inelastic Spheres: Calculation of Elastic-Plastic Contact
Forces and Impacts

There is ample experimental, theoretical and calculational evidence that for
any substantial impact velocity between two colliding spheres, yield strengths
will be exceeded in the contact area and significant energy will go into
irreversible work deforming the surfaces in the region of contact (Goldsmith,
1960). Walton and Hagen (1984) repeated their elastic sphere finite element
calculations using an elastic-perfectly-plastic constitutive model. The yield
strength for these generic calculations was arbitrarily set to match the
maximum calculated deviatoric stress in the contact region during a previously
calculated elastic impact with an incident velocity of 0.3 m/s. For impacts at
speeds less than this ‘plastic yield threshold” value, the elastic-plastic results
were essentially identical with the previous perfectly-elastic calculations, with
less than 1 percent of the initial kinetic energy being lost upon recoil, either to
numerical error or elastic waves inside the rebounding spheres. For velocities
exceeding the threshold where plastic flow developed in the contact region,
the effective coefficient of restitution, e, (defined as the negative of the ratio of



892 Particulate Two-Phase Flow

recoil to incident speeds) falls approximately as the inverse 1/4 power of the
velocity; a relation proposed for fully plastic collisions (Johnson, 1986).

The calculations were repeated with a slightly higher yield strength,
set to allow plastic flow to initiate at an impact velocity of 0.5 m/s. These
calculations produced similar results. Figure 25-3 shows the coefficient of
restitution obtained in these calculations and representative experimental
values obtained for collisions between ductile metal spheres (Goldsmith,
1960). Also shown on this Figure is the behavior of the empirical ‘partially
latching spring” model of Walton and Braun (1986).

Most discrete particle simulation calculations to date have used a
constant coefficient of restitution, independent of incident velocity. The
primary reason for using a fixed value for e is that most kinetic theory models
of granular flow also employ a constant value for e, and there are very few
experimental results available that include sufficient measurements of collision
properties to adequately characterize the coefficient of restitution, except by a
single average value, valid in the range of velocities observed in the
experiments.

The same elastic and elastic-perfectly-plastic constitutive models were
used in quasi static finite-element calculations to determine the effective
normal-force displacement behavior for this idealized configuration (Walton
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FIGURE 25-3 Variation of coefficient of restitution with impact velocity.
Experimental results (open symbols) are for metal spheres (Goldsmith,
1960). Finite element calculations for elastic perfectly-plastic material model
are shown as filled circles (yield strength set so plastic deformation starts at
impact velocities exceeding 0.3m/s) and pluses (yield set to allow plastic
deformation only above 0.5m/s). Dashed line is representative curve for
empirical formula of Walton and Braun (1986). Solid lines are inverse 1/4
power of velocity, as predicted by fully plastic theory (Johnson, 1986).
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FIGURE 25-4 a) Representative zoning used in finite element calculations
of a hemisphere impinging on a rigid wall (Walton and Brandeis, 1984), and
b) Calculated equal pressure contours using elastic-perfectly-plastic
constitutive model.

and Brandeis, 1984). Figure 25-4a shows representative zoning used in these
axisymmetric, two-dimensional calculations utilizing the NIKE2D finite
element model (Halquist, 1979). Coarser and finer meshes were also used.
Since most of the deformation was localized in the contact region only the
contacting half of the sphere was modeled. Using a perfectly-elastic
constitutive model in the calculations, Walton and Brandeis verified that, to
within one or two percent, the finite element force-displacement curve
followed the predicted Hertzian 3/2 power relationship given by Equation
25.9.

Using an elastic-perfectly-plastic constitutive model in the NIKE2D
code, the hemisphere was moved, in successive steps, toward the wall,
withdrawn, and then back toward the wall again, to produce loading,
unloading and reloading force-displacement curves. Figure 25-4b shows
contours of constant pressure near the maximum indentation experienced by
the elastic-plastic hemisphere. Figure 25-5 shows the resulting quasi-static
force displacement behavior for the elastic-plastic body compared to the
theoretical elastic Hertzian 3/2 power force-displacement curve. The wavy
character of the elastic-plastic loading curve appears to be the result of the
coarseness of the finite element mesh. When coarser or finer elements were
used, the general nearly-linear loading curve was reproduced; but, the
magnitude of the “wiggles” on the curve scaled with the zone size. It appears
that as each new annular zone comes into contact with the rigid planer surface
it initially responds elastically (i.e., nearly like the theoretical Hertzian curve)
but, as the elastic limit is reached and plastic flow occurs in the newly loaded
zone, the force vs. displacement curve exhibits a lower slope until the next -
annular zone starts bearing a significant fraction of the load, etc. The dashed
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line on Figure 25-5 is a straight line drawn approximately through the
‘average’ calculated force-displacement loading curve.

Nearly linear loading behavior for plastically deforming contacts of
spherical surfaces has also been observed experimentally. Goldsmith (1960)
reports similar behavior measured during impacts of a steel sphere on an
aluminum rod with a spherical end. Mullier, et al. (1991) measured normal-
direction force vs micro-displacement for 6mm diameter cellulose acetate
spheres in contact. While they report fitting a 3/2 power curve to the data,
subsequent analysis done by Drake and Walton (1992) has inducted at least as
good a fit to the observed data with a linear loading curve. Also, scanning
electron microscope (SEM) examination of the contact surface region of these
cellulose acetate spheres showed evidence of plastic deformation.
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FIGURE 25-5. Loading and unloading force-displacement behavior for
elastic-plastic spheres during quasi static normal displacement as calculated
using NIKE2D finite element model (Walton and Brandeis, 1984)

25.3.4 Hysteretic Normal Force Models

Walton and Braun (1986) use a simple
empirical normal force model that approximates the
behavior observed in the above experiments and finite
element calculations. In their model the normal force |
has a linear loading curve, with a slope K, and a Z |
steeper linear unloading slope, K,. The normal force,

;11
-
By |
|
&
. ]

Force

N, is given by, splavem
Displacement
| Ko for loading, and FIGURE 25-6
| Ky(o-09) for unloading. 25.11)

Unloading follows this steeper slope until the normal force is zero (with a
finite “overlap,” 0y, remaining). Upon further unloading the force remains at
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zero, or, upon reloading, it increases with slope K> until the original loading
curve (Kj) is reached, (see Fig. 25-6). The slope of the unloading/reloading
curve, K3, can be set to increase linearly with the maximum force reached
during a contact, or it can be set to a constant value. The area between the
loading and unloading paths represents the energy lost to plastic deformation.
If the unloading slope K> is a fixed value (independent of the past load
history) then a constant coefficient of restitution given by e = VK /K7 results
for this model. If the unloading slope, K>, is allowed to increase linearly
with the magnitude of the maximum force ever experienced by the contact
(e.g., K2 =Ko + § Fmax) where the slope factor, S, is a fixed model
parameter, empirically determined, then the coefficient of restitution behavior
is as shown in Figure 25-3. Similar models can be easily constructed using
non-linear (e.g. Hertzian-like) loading and unloading paths, by simply
changing the power of the displacement terms in Equation 25.11. If the
displacement terms are raised to the 3/2 power in Equation 25.11, then the
initial loading is the same foym as Hertz’ elastic solution and the coefficient of
restitution is given by e = VK /K> .

25.3.5 Visco-elastic Normal Force Models

An alternative to a position dependent contact model is to utilize a
viscous damping term to dissipate energy. The damping can be added to an
otherwise elastic normal force model. A linear damped harmonic oscillator is
the simplest such approach, letting the normal force, N, be given by

N=Ka+Da (25.12)
where K and D are constants., and o and & are the relative normal
displacement and velocity at the contact point. Such a model produces a
constant coefficient of restitution, independent of impact velocity. As usually
implemented, however, the force is purely repulsive and the viscous term is
set to zero whenever there is no overlap (see, Cundall, 1974 and 1979). Such
an approach leads to a discontinuity in the force as initial contact (i.e.,
overlap) is established since & is a maximum when o = 0. The discontinuity
can be eliminated by “weighting” the viscous term by the displacement. A
general power law relation

N=Ka"+D amq (25.13)

has been proposed to model real inelastic contacts (Hunt and Crossley 1975,
Oden and Martins 1984). Such a power law relationship can be Hookeian
(i.e., with n =1) or Hertzian (n = 3/2) and can have a discontinuity on initial
contact (m = 0) or it can have the damping “weighted” by the elastic force
(m =n). For implementation, the values of all four parameters K, n, D and
m need to be determined empirically. Oden and Martins (1984) discuss the
energy losses obtained with such a model.
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25.4 FRICTIONAL CONTACTS
25.4.1 Analysis of Frictional, Elastic Contacts

The problem of arbitrary oblique contacts between two frictional elastic
spheres has never been completely solved. Despite the fact that more than
100 years have passed since Hertz solved the linear elastic contact equations
for the distribution on normal-direction stress and strain in the region where
two elastic spheres contact each other, there is still no complete solution to the
stress and strain distribution if Coulombic friction is assumed to apply on the
contact surface, and arbitrary rotation and tangential sliding are combined with
changing normal direction contact between elastic spheres. Mindlin (1949)
derived expressions for tangential compliance vs displacement for spheres
with elastic Hertzian normal stress distributions in their contact regions. The
resulting force vs displacement relationship is of the form

16Ga 312
F= 1-(1-——m———§ 25.14
w1 (1 8507 (25.14)

up to the full sliding limit at &s = 3(1222 UN when the entire contact

experiences slip and the tangential force is just equal to the Coulomb friction
limiting value, F = uN; where G is the shear modulus, v is Poisson ratio, N
is normal load, W is the coefficient of friction, 8s is tangential displacement
and a is the Hertzian contact radius given by

a= (E*NR)”3

1-v2
where E* = %(T , and E is young’s modulus.

If contacting spheres simultaneously experience rotation, either about their
contact normal, or “rolling,” coupled with tangential sliding, then the
tangential strain distribution is modified and Mindlin’s theory does not
adequately describe the tangential force or compliance. Various approximate
models, that are relatively straight forward to calculate, have been proposed
for frictional contacts such as the “elastic bed” normal force model combined
with a “wire brush” tangential friction model (see Johnson, 1990) and an
“incrementally slipping” model approximating Mindlin’s tangential functional
form for initial tangential loading (Walton and Braun, 1986; Walton, 1992).
It is beyond the scope of this chapter to thoroughly review various “soft”
particle friction models; however we will examine the nature of the rotational
coupling that occurs for binary collisions between frictional spheres -- the
feature most relevant for numerical models of granular flow. The reader is
referred to Johnson (1985), and Oden and Martins (1984) for further
discussion on frictional contact models. Also, Thornton (1988) and Patrakas
et al (1990) have implemented numerical algorithms that approximate Mindlin
and Deresiewicz (1953) force-displacement behavior for simultaneous
tangential and normal direction displacements. (These models still do not
include the confounding effects of rotations on the stress distribution in the
contact region).
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25.4.2 Experiments and Numerical Analysis of Frictional
Collisions

Experiments involving carefully controlled impacts of an air table “puck”
(made from a section of a sphere) with a planar wall, demonstrate that release
of tangential elastic strain energy stored during a collision can, indeed, reverse
the direction of the original rotation and the relative surface velocity at the
contact point (Maw et al., 1976, 1981). This is a phenomenon familiar to
anyone who has played with a “superball” (e.g. see Garwin,1969), and
corresponds to positive values of Lun and Savage’s (1987) parameter, J3,
discussed below.

Maw et al numerically integrated the tangential stress over a Hertzian
contact area during collisions that involved both sliding and rotation. Their
numerical solution to the frictional contact problem was essentially equivalent
to Mindlin’s analysis of oblique contacts between elastic spheres (Mindlin,
1949; Mindlin and Deresiewicz, 1953). They assumed that the tangential
surface displacement due to either rotation or sliding had identical effects on
the distribution of tangential stress in the circular contact area (equivalent to
assuming the displacement is all effectively “sliding”). This approach ignores
“rolling” resistance that occurs even when no relative surface velocity exists,
but both spheres are counter rotating so that their surfaces “roll” on each other
and also ignores any effects due to rotation about the contact normal. None-
theless, Maw et al’s. analysis was able to capture the most important physical
phenomena for impacts restricted to a plane. Their careful numerical
integration of the contact forces acting between frictional, elastic spheres,
demonstrated that the degree of tangential coupling depends strongly on the
ratio of the effective tangential-direction stiffness to the stiffness in the
normal-direction (Maw et al. 1981).

The continuously varying contact force models used in most discrete
particle simulations such as Cundall (1974), Cundall and Strack(1979),
Walton and Braun (1986a and Walton (1992) automatically allow reversal of
the tangential surface velocity as tangential strain energy is recovered during
rebound. No explicit assumptions are made in such models about rotational
restitution coefficients; however, depending on the ratio of tangential to
normal stiffnesses assumed, behavior very similar to that predicted by Maw et
al can be obtained in these simulated collisions (see Walton & Braun, 1986a).

25.5 HARD SPHERE COLLISIONS WITH FRICTION

In the interest of computational efficiency, it is often preferable to
specify an instantaneous collision operator for rigid particles instead of
evaluating a continuously varying force-displacement relationships 40 or 50
times during each collision in the simulation. Such hard-sphere collision
operators are also utilized in kinetic theory models of granular flow. Various
models have been proposed to approximate collisions between inelastic,
frictional spheres.

On a molecular scale perfectly rough, perfectly elastic, spheres have been
a standard, energy conserving, model for molecules that include rotational
degrees of freedom for decades (Chapman and Cowling 1952). More
recently, various partially rough collision models have been proposed (e.g.,
Berne, 1977; Veseley, 1980); however, since these models conserve energy,
‘'they are not appropriate for modeling interactions between macroscopic sized
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particles that collide inelastically and with sliding friction. Goldsmith (1960)
describes the usual model assumed for frictional impacts (i.e., that friction
forces can only slow or stop the relative tangential velocity between colliding
particles). Two-dimensional hard-disk simulation models such as
Hawkins(1983) and theoretical models such as Nakagawa (1987) utilize
collision operators that are equivalent to Goldsmith’s treatment, combined
with a non-unity coefficient of restitution in the normal direction. Others,
such as Campbell and Brennen (1985), have assumed that all collisions result
in zero relative surface velocity upon disengagement (i.e., all contacts are
rolling contacts). Brach (1988) utilizes a coefficient, {1, to characterize the
tangential momentum transferred in oblique impacts. His model can allow the
direction of rotation to reverse, but his single parameter is not directly related
to contact friction and is difficult to calibrate against measured properties.

Lun and Savage (1987) describe a rough, inelastic sphere collision
operator incorporating a rotational restitution coefficient, B, defined analogous
to the normal direction coefficient of restitution, e. According to their rough
inelastic sphere model, two particles of diameter o, having translational
velocities v1 and v7, angular velocities @ ; and @ 2, have a total relative
velocity, g12, at their contact point just prior to collision given by,

(o)
g12 = V21 - ’z_(élzxa).)lz) (25.15)

where T3 is a unit vector from particle 1 to 2, Rpr=0;+0 2, and
v21 = v - v2. During a collision the components of velocity and angular
velocity are changed such that,

ri2va = -e (r12vay) (25.16)
and

rizxghh= -p(rizxgz). (25.17)
where the prime indicates the post-collision values and they assume the coef-
ficients e and B are fixed constants in the ranges, 0<e <land-1<B<1,
with B = -1 being perfectly smooth, B = 1 perfectly rough spheres (Chapman
and Cowling, 1952), and B = 0 corresponding to Campbell and Brennen’s
(1985) rolling contact model. Fixed values for e and B were used by Lun and
Savage to represent average values over a spectrum of collisions and served
to allow sensitivity of stresses to inelasticity and roughness to be studied, but
there was no direct correspondence between rotational restitution coefficient,
B, and a contact friction coefficient.

25.5.1 Frictional Hard-Sphere Collision Operator
A more realistic inelastic, frictional collision operator can be described
using three parameters:
1) the coefficient of restitution, e, in the normal direction;

2) a coefficient of rotational restitution, B, for those contacts that are
not continuously sliding during the entire collision, and,

3) a coefficient of sliding friction, |, acting during sliding or grazing
collisions.

The model is essentially an extension of the disk collision operators of
Hawkins(1983) or Nakagawa (1987) or Hopkins (1988) to three dimensions
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with the additional feature that, during a collision, tangential velocity
differences can not only decrease, but can also reverse direction. This three
parameter model provides a reasonably accurate description of collisions
between real macroscopic spheres, and it can easily be extended (by making B
into a function of the angle of incidence) to be nearly an exact representation
of collisions between frictional, elastic spheres interacting with Hertz-Mindlin
contacts (see Mindlin, 1949; Maw et al. 1976, 1981; Walton and Braun,
1986a; or Walton, 1992).

Consider a collision between two frictional, inelastic spheres with mass
mq and myp, centers located at ry and rp, travelmg w1th velocities v and vp
before impact and having rotational velocities @, and @p. Let,

= unit vector from a to b,

Vap = Vp-V, =relative velocity,
Vo = Vgp Tg = normal component of relative velocity,
V., =V.Iyp =normal direction relative velocity,

v, = ?abx{vabx?ab) = V4 - V, = tangential direction relative velocity,
relative surface velocity

V= V; + 9'_a_( X“)a)+g_'(rabxm) (tangential direction)

2 2

”~
ks = —- = unit vector in direction of incident surface velocity

v 5 = vy-k; =tangential component of relative surface velocity.

Conserving translational momentum and utilizing the usual definition of
the coefficient of restitution, e = -v'p/v, and defining the rotational
restitution coefficient as, f§ =-v'y/vy where the prime denotes post collision
values, we obtain the changes in normal direction velocities,

_ mb(1+e)

AVna = 0, ¥y " (25.18)
_-mg{l+e)

AVib = o tmp V" (25.19)

Conserving angular momentum about the contact point we obtain three
vector equations relatmg the four vector quantities giving the changes in
rotational velocities @ ; and @ p and the tangential direction translational
velocities Vig and vip |

i:ab X AVta

AQ, =
Ga (25.20)

A®p = —2— Tz XAV
b " Ko, 70 (25.21)

Avy =-Ta
Vib = - i, AVia (25.22)
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where K = 4ly/ma? = 2/5 or uniform density spheres and I, is the moment of
inertia. In order to solve for these four vector quantities an additional vector
relation is needed. We use two forms for the fourth relation depending on
the conditions of the impact -- one for sliding contacts and one for rolling
contacts.

During frictional impacts the tangential force is always equal to or less
than the product of the coefficient of friction, |, and the normal force acting
at the contact. The sliding solution assumes that during the entire contact the
tangential force is always at the friction limit so that ,

(tangential impulse) = p (normal impulse).
However, the assumption of fully sliding contacts is not always valid since
sliding may dissipate sufficient energy for the two spheres to lose all relative
tangential velocity (i.e., to be rolling together). In real collisions relative
tangential velocities can not only go to zero, but the stored tangential strain
energy in the contact region can often cause the direction of the relative
surface velocity to actually reverse before separation, leading to positive

values of B (e.g., see Maw et al. 1976, 1981; and Drake, 1988).

The solution procedure consists of assuming a sliding contact,
obtaining the changes in tangential and rotational velocities, then checking to
see if the rotational restitution coefficient resulting from the sliding solution,

B*, given by
*=- 1 +p(l+e)[14+L) Y2 (sliding solution),
B W(1+e) (1+) 32 (sliding solution) 2529
exceeds a predetermined (constant) maximum value, fo, where 1> Bo = 0.
If B* > Bo, then a rolling solution equivalent to Lun and Savage's collision

operator with a fixed § = Bo is employed to determine the post collision
velocities.

25.5.2 Numerical Implementation of Collision Operator

A numerical algorithm implementing this model for equal size, equal
mass, inelastic, frictional spheres is as follows:

Tap = é(rb -rg) (at contact)
Vab = Vp-Vq
Vn = Vab ?ab
Vi = Vab - Valab
Vs= V4 %?ab X (Ef)a +c—5b)
if (vg-vg) = 0 then

= -1

else
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(1 +[3*\)2=u2 (1+e)2(1 +'I%)2 V2

if (1 + B*)z > (1 + Bo)2 then

B =B (rolling solution)  (25.24)

B=B*  [sliding solution = 14V 14642 ]

else

endif

endif

where the sliding solution evaluation of B* is the only step that requires a

square root call. The resulting changes in normal, tangential and rotational
velocity components for each sphere are given by,

AVpg = - AVpp = }2(1 +€) VuTap

(25.25)
_ . K{1+p) |
Avia=-Avi = 20 v (25.26)
A a = A =—7"Ia s
@ oK +1) " bxv (25.27)

The effect of this frictional, inelastic hard-sphere collision operator can
be plotted as two straight lines giving the effective rotational restitution coef-

ficient, B, as a function of the ratio of incident normal to tangential velocities,
Vn/vs, as shown on Figure 25-7 (e.g., Equations 25.23. and 25.24).

+1.0

B
o

1
-t
o

/ Energy limit

Friction limit —\//
/

/ Rolling contact
y / Tonne

[

1 R
K (1+e)(1+ K Y, /Us
Sliding contact

FIGURE 25-7 Representative curve for rotational restitution coefficient, J3,

as given by the inelastic frictional collision operator (i.e., Equations 25.23
and 25.24).
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Application of the operator also produces two straight lines if plotted as
the tangent of the effective recoil angle, - v¢' /vp', vs the tangent of the
effective incident angle, v /v,,, as shown in Figure 25-8, which is equivalent
to the W2 vs. Y1 plots of Maw et al. (1976,1981). The rolling solution line in
Figure. 25-8 is determined by the equation,

s Boys
V' € Vn (25.28)
and the equation for the sliding solution line on Figure. 25-8 is,

Vs _ 1 1 1 Vs
V' ”(17) (17) Tev, (25.29)
The slightly deformable particle models of Walton and Braun (1986), the
experimental measurements and analysis of sphere-wall collisions of Maw et
al. (1976, 1981), and the measurements of Drake (1988), all show a similar
character for collisions of frictional spheres, with the transition from sliding
to rolling occurring less abruptly for real spheres than for the collision
operator model. Drake's data for plastic sphere impacts indicate that a value
of By near 0.35 is reasonable for the “rolling” branch.

3 [Wz
’-\VZ o °
4t
2f ° 8
00096 ° -
Th ) .2
i eory (Maw et al,) © 000 2l £ Theory (Maw et al.)
, ,,z,,,woﬁ?ts.o'?.fﬂgsw 2
- ;
1 3 S, 7 b4 1w v
° % ling & oy,
/b\(‘ //\b =
4 & )

FIGURE 25.8 Representative curves Jor tangent of effective recoil angle,
V's/ V', (ie., y3) vs. tangent of effective incident angle, vy/v,, (ie., Vi)
as determined by inelastic collision operator ( equations 25.28 and 25.29),
straight lines, by numerical analysis of Maw et al., solid curves, and in
experiments of Maw et al. with rubber and steel (1976, 1981) symbols.

25.6 STRESSES IN STEADY SHEARING FLOWS

average of the expression in Equation 25.6, has perhaps been the most
thoroughly examined. For systems of inelastic particles that are at a packing
density below that which produces continuous contacts (around 0.5) the
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equilibrium stress is zero since, for dissipative systems, the equilibrium state
has no kinetic energy. Granular material in steady shearing flow, on the other
hand, is not at equilibrium and numerical simulations have confirmed
Bagnold’s analysis that in the grain inertia regime all stress tensor components
vary with the square of the strain rate and particle size and directly with the
density of the solid material. Most steady shearmg flow results are non-
dimensionalized by dividing the stress by © pse7- where o is the particle
diameter, ps is the material density and ¢ is the strain rate.

Numerical simulations have corroborated kinetic theory predictions
that show strong sensitivity to packing fraction and coefficient of restitution
(see for example Walton and Braun, 1986a, 1986b; Walton, 1990). Initially
unexpected, but later included in improved kinetic theories, were the large
first normal stress differences found in steady shearing flows at very low
solids fractions (Walton, Kim and Rosato, 1990). Other effects such as
sensitivity to friction and recently observed clustering phenomena at low
solids packing are currently the subjects of ongoing research efforts.

We have utilized the rigid sphere model to examine the effects of
coefficient of friction, {1, and the maximum rotational restitution coefficient,
Bo on stresses in rapid shearing flows of frictional spheres. Figure 25.9
shows how stresses in simulations at two different solids packings, v = 0.4
and 0.5, depend on coefficient of friction, W, in the range, 0 < pu <1,
(stresses shown on this figure have been non-dimensionalized by dividing by
02pse2). The results of three different rotational coupling assumptions are
shown on this figure. The curves for solid packing of 0.4 and the dashed
curve at the higher density are from simulations with 125 slightly deformable,
equal-sized, inelastic spheres, using an incrementally-slipping friction model
(Walton and Braun, 1986a, Walton, 1992). The coefficient of restitution for
all interactions in this calculational series was 0.8. The stiffness of the
slightly-deformable spheres (i.e., Kj in Equation 25.11) was selected so that
maximum "overlaps" were a fraction of one percent of a sphere radius. This
stiffness was varied by one order of magnitude to demonstrate that the results
were insensitive to the specific value selected. The stresses calculated using
spheres with the highest stiffness were generally within 2 percent of the
values obtained with the hard sphere model (without friction).

The calculated non-dimensional normal stress, P*yy, was found to
decrease monotonically with increasing friction at a packing fraction of v =
0.4. This is apparently because friction adds another energy loss mechanism,
reducing the vibrational kinetic energy in the system, and thus, the stresses.
However, the additional shear coupling between colliding particles
compensates somewhat for this effect in the shear direction so that the shear
stress is almost unaffected by the value of friction coefficient at a solids
packing of v = 0.4 Although not shown on this figure, representative
calculations were done at B = (.4 with the hard-sphere model as well. They
were generally within 2% of the values shown for the slightly deformable
(i.e., soft ) sphere model.

At the higher density the results are more interesting, with the
slightly-deformable model producing normal stresses that first decrease, then
increase, as the coefficient of friction increases, and shear stresses that
increase nearly monotonically with the coefficient of friction. The hard-
sphere model with By = 0.3 shows the same qualitative behavior, but the
increase in stresses is much more rapid as the coefficient of friction increases
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FIGURE 25-9 Effect of coefficient of friction on non-dimensional shear
and normal stresses in steady shearing flow of uniform sized, inelastic,
Jrictional spheres as calculated Jor 108 hard spheres with two choices of the
maximum rotational restitution coefficient, Bo, and for 125 slightly
deformable spheres interacting with an incrementally-slipping friction model
(Walton, 1992) similar in effect to that of Mindlin and Deresiewicz [1953].

from 0.1 to 0.5. The hard-sphere model with By = 0 (corresponding to
Nakagawa's model) does not show a significant increase in either stress
component with increasing friction coefficient. Instead, the curves are
qualitatively similar to those at the lower density. In almost all cases the
stresses calculated by the incrementally-slipping deformable-sphere model lie
between the two hard-sphere cases of Bo = 0 and Bo = 0.3, as we might
expect since the calculated B values for “rolling branch” collisions with the
soft particle model are usually between the two Bo values used in the hard
sphere simulations (see Walton and Braun, 1986a. The large differences in
calculated hard-sphere stresses (=50%) for the two choices of B (i.e. 0and
0.3) implies that stresses at high solids packings are more sensitive than
previously thought to the details of the tangential coupling during collisions.
Thus, at high packings it is important to correctly model the effects of the true
interaction forces. The algorithm implementing the hard-sphere model
collision operator is designed so that it can easily incorporate a non-constant B
for the rolling solution; one, for example, which depends on the effective
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angle of incidence. This dependence could be an analytic expression or an
interpolation table based on more exact collision calculations. Such an
addition would only marginally decrease the computational efficiency of the
hard-sphere model.

25.7 MICROSTRUCTURE AND STRESS DIFFERENCES

Recent simulations of rapid shearing flows of highly inelastic spheres
have exhibited both large first normal stress differences and the formation of
clusters of particles (Hopkins and Louge, 1989; Walton et al, 1991) The
formation of such clusters is evidently an inherent feature of assemblies of
inelastic particles even though no attractive potential is included in the
interaction models (Goldhirsch, 1991; Savage, 1992; Babic, 1991). Recent
simulations of Zanetti and Goldhirsch indicate that any isolated system of
initially uniformly distributed, inelastic particles, with a uniform distribution
of velocities will eventually exhibit large variations in the spatial distribution
of mass (i.e., large clusters will form as the system ‘cools’ via collisional
energy losses).

Figure 25.10 shows the particles in two identical ‘slices’ from a
calculation of steady shearing flow of inelastic, smooth spheres, with periodic
boundaries on all sided. On average, a uniform shear is imposed by moving
the image particles in the cell above the primary calculational cell to the right,
and those in the image cell below the primary one to the left at constant speed.
Each frame shown represents 1/5 of the total calculation space, which
contains 4096 particles. The coefficient of restitution in these simulations was
0.01. The particles were initially nearly uniformly distributed throughout the

STEADY SHEAR - INELASTIC SPHERES STEADY SHEAR - INELASTIC SPHERES
n1=4096 ri= 1.9124E-02 n1=4096 ri= 1.9124E-02
e=0.010 solids fraction=0.120 e=0.010 solids fraction= 0.120

Time = 90.00000 Time = 90.00000

Slice with1156 particles Slice with 524 particies

FIGURE 25-10 Simulation of steady shearing flow of 4096 highly
inelastic, e = 0.01, spheres.Two identical size slices, each showing 1/5 of the
total volume of the primary calculational cell. after a shear strain of 90.
Periodic boundaries on all sides. Note large variation in the distribution of
particles.
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cell. The configuration shown is after a total shear deformation of 90 (i.e.,
distance of 90 cell widths at the time of the image shown). Clearly there are
large variations in the density distribution in the calculational cell. The
‘cluster’ size in this case is on the same order as the calculational cell size --
indicating that the simulation will be of little assistance in determining if there
is a ‘natural’ maximum cluster size that forms in these shearing flows.

Larger sample size simulations have been used in studying cluster
formation and growth (Goldhirsch, 1991) and further numerical study of such

phenomena will require systems with on the order of 106 particles, like the
models of Hoover et al. ( 1990).

25.8 SUMMARY

Discrete particle simulations are providing insight into mechanics that
affect the flow behavior of granular solids, Good quantitative agreement has
been achieved with chute flow measurements and with theories when the
Same assumptions are made in the models and the theories. Similar good
agreement has been obtained with annular shear cell measurements of shear
stress (Walton, 1990)

New phenomena, such as the clusters that were recently “discovered”
in low-density simulations (Goldhirsch, 1991, Hopkins and Louge, 1991 and
Walton er al, 1991) are now the focus of new theoretical studies (Babic,
1991, Savage, 1992, Goldhirsch (& Zanetti) , 1991). Other phenomena,
such as large first normal stress differences in steady shearing flows are now
generally accepted, and have been incorporated into kinetic theory models for
granular materials (Richman and Chou, 1989).

In simulations of systems of interacting particles the physics that
distinguishes one material from another is contained in the interaction
parameters assumed. Thus, it is important to include a sufficiently realistic
model of the “true” interactions if we want the simulated bulk behavior to
follow the “true” bulk behavior of the material. Eliminating such details as
interparticle friction (and thus all particle rotation) may produce models that
are simple and straight forward to evaluate; however, leaving out such
important effects may produce a “model material” that bears little resemblance
to any real granular material.

like the ones described here is that sensitivity studies can be performed in a
straight forward manner to determine how individual features of interparticle
interactions affect the bulk behavior of the assembly. For example, to see if
friction and particle rotations, are important to include, one need merely
simulate the flow configuration of interest with, and without, friction in the
interparticle interaction. ‘

Based on our present knowledge, it is not possible to make a blanket
statement about what effect friction has on the stresses, even in flows as
simple as steady rectilinear shear flow. The addition of friction effects can
either decrease or increase stresses, depending on the solids concentration and
the magnitude of the friction coefficient, This is but one example showing that
even dry granular flows are more complex than originally envisioned and that
microstructural analyses can provide insight into their behavior.

Dry granular flows remain an important subset of two-phase
particulate flow behavior, It is important that we understand the behavior of
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the particulate phase as well as the fluid phase. Discrete particle simulations
are aiding in that understanding.

25.9 FUTURE WORK

With the advent of massively parallel computers and improved
software, we are seeing significant improvements in our ability to simulate the
complex phenomena in particulate flows. For example, Hoover et al, (1990)
describe million-atom molecular dynamics simulations. Such algorithms and
parallel processors could also be applied to macroscopic particle simulations.
Kim and Fuentes (1992) describe new boundary integral algorithms
applicable to suspensions and Ladd and Frenkel (1990) are developing new
lattice-Boltzman methods for suspensions. As massively parallel computers
become more widely available we can expect to see even more rapid
proliferation of new algorithms to take advantage of them, and a
corresponding significant improvement in our ability to simulate these
complex systems. Direct simulation of flows of engineering interest will soon
be possible and future design calculations may well utilize discrete particle
flow simulations as routinely as today’s fluid flow designers utilize finite
element flow codes.
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