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ABSTRACT 

Under micro-gravity, lack of sedimentation allows all 
scales of airborne particulates to participate in the 
formation of clusters and aggregates.  As observed in 
the International Space Station (ISS), the resulting very-
low-density dust aggregates can collect on ventilation 
inlet screens and duct walls. Discrete Element Method 
(DEM) simulations, utilizing cohesive interparticle forces 
and bending-moment interactions, are a tool that can 
assist in understanding the build-up, compaction, and 
removal of such agglomerate beds.  At a different 
length-scale, high pellet-pellet contact stresses can be 
developed in the thermally cycled packed granular beds 
of air revitalization equipment (possibly fracturing pellets 
and/or producing unwanted fines). The limits and 
capabilities of DEM models to simulate these and other 
particulate systems is discussed. 

INTRODUCTION 

AIRBORNE FINE PARTICULATES – Under micro-
gravity, sedimentation and thermal convection forces do 
not contribute to airborne particulate motion.  Thus, 
interparticle cohesion, forced convection, and Brownian 
diffusion become much more important than they are for 
comparable-sized particles in a terrestrial environment.  
Particulates generated in crew habitat areas are 
comprised of the expected constituents (i.e., skin flakes, 
fibers from hair, clothing, and paper, as well as other 
organic and inorganic particles); however, larger 
particles do not settle out like they would terrestrially.  
The longer airborne lifetimes mean that larger particles 
participate in cluster and aggregate formation to a 
greater degree than they would on earth.  In long 
duration space missions most dust aggregates will 
eventually enter the ventilation system, and many will 
deposit through a process of ‘envelope’ impaction – 
wherein the center-of-inertia of the aggregate follows 
forced convection streamlines like an aerodynamic-
diameter particle an order of magnitude or so smaller 
than the dimension of the aggregate.  The periphery of a 
streamline-following aggregate can ‘impact’ the 
boundary and add to a ‘dust’ deposition layer.  Improved 

discrete element method (DEM) models that include 
cohesive surface force models, are being developed for 
simulation of micron-scale pharmaceutical powders.  
Similar models could be applied to simulate the behavior 
of airborne fine particulates in crew habitat areas.  The 
interparticle force models in the DEM codes include 
estimated stiffnesses for normal direction and bending-
moment interactions between contacting particle-pairs.  
Inclusion of these cohesive forces and moments allow 
the simulated material to resist compaction from a 
relatively loose ‘floc-like’ state in a realistic manner.  
Uniaxial compaction tests on cohesive pharmaceutical 
powders, comprised of micron-scale primary particles, 
demonstrate the wide range of bulk-density change 
exhibited by powders wherein the bulk behavior is 
dominated by cohesive interparticle forces.  DEM 
simulations could contribute to understanding the 
microstructural details of the deformation, restructuring, 
compaction and/or redispersion of agglomerated dust 
beds, in response to applied loads from the impaction of 
additional dust aggregates, fluctuations in air flow, or 
other remediation measures. 

PACKED GRANULAR BEDS – Downstream from 
thermally cycled packed granular beds in air 
revitalization equipment aboard the ISS, pellet fragments 
and fines have been observed, which appear to have 
been the cause of difficulties with mechanical valves and 
seals in the flow system.  Theoretical and experimental 
studies of granular solids have demonstrated that high 
internal stresses can be generated in packed beds, with 
aspect ratios greater than two, because of frictional 
forces transmitted to the bed walls (a form of the 
Janssen ‘silo’ effect).  The propensity to generate high 
stresses in packed beds may be highly  sensitive to the 
degree of consolidation (or void fraction remaining) 
and/or locked-in contact and frictional wall forces 
existing in the bed.  Systematic variation of bed 
parameters such as aspect ratio, initial packing, and 
particle shape or size distributions in DEM simulations 
could provide new insight into mechanisms contributing 
to stress generation in packed beds.  In addition, 
although heat conduction through pellet-pellet contacts 
is a small factor in overall heat transfer in systems with 



interstitial gas near one atmosphere, at high vacuum, 
the sensitivity of contact heat transfer to the force levels 
existing at contacts could make pellet-pellet heat 
conduction a strong competitor to radiative heat transfer 
during heating, and thus, may increase 
thermomechanical stresses along already loaded ‘stress 
trees’ in the bed.  The methodology for a DEM-lumped-
parameter heat transfer simulation technique suitable for 
packed granular beds (like that proposed by McCarthy, 
2003) is outlined. 

APPLICABILITY OF DEM – Discrete Element Methods 
utilize numerical techniques nearly identical to the well 
known explicit particle trajectory following methods of 
molecular-dynamics (Allen, 1987) to calculate the motion 
of each individual particle in assemblies of up to 10’s of 
thousands of interacting particles.  Application of such 
methods for assemblies of macroscopic particles was 
pioneered by Cundall in the 1970’s (Cundall & Strack 
1979) using relatively simple engineering-mechanics-
based joint-elements between contacting nearly-rigid 
particles.  Subsequent work has demonstrated ranges of 
conditions under which such methods may be 
applicable, including collision-dominated rapid shearing 
granular flows and quasistatic deformation of soils and 
granular beds. Scale and/or mode separation allows 
quasistatic interparticle force relations to adequately 
describe even highly dynamic collisions in particulate 
systems as long as particle deformations are small.  
DEM models usually assume most particle deformation 
is local to the contact points, and can be approximated 
by linear (or non-linear) springs acting at the points of 
contact.  Such assumptions begin to fail if stresses are 
so high that large plastic deformations at contacts make 
the contact spot-size comparable to the particle 
dimension, or if large elastic or plastic strains occur 
changing the effective shape of the modeled particles.  
In some cases approximate models of particle ‘failure’ 
have been incorporated (e.g., brittle fractures of 
individual pellets have been modeled by creation of 
multiple post-failure particles). 

Interparticle force-displacement relations are the most 
important particle-scale physical properties in DEM 
simulations (additional key particle-scale properties 
include the particle shapes and the size distributions 
simulated).  Below we describe a relatively simple (and 
thus, calculationally straightforward) interparticle force 
model for DEM simulations of cohesive micron-scale 
particles that is physical-property based, and is expected 
to be robust enough to realistically simulate the 
mechanical behavior of low-bulk-density aggregate beds 
and/or low-mass-fractal-dimension aggregated clusters 
of particulates.  A full simulation of airborne flows will 
need to add the gas flow and fluid-solid coupling 
interactions to the particle-interaction models described 
here.  Lattice-Boltzmann  approaches for the fluid flow 
with suspended particles (Ladd, 2001) probably would 
provide the most robust approach; however, other, less 
accurate gas-solid coupling models may be adequate for 
initial studies (e.g., Kawaguchi, 2000).  In addition to the 
new model of interparticle forces for cohesive micron-

scale particles, we also describe developments that 
could be useful for simulations of thermomechanical 
stresses at another size scale, namely the millimeter-
scale pellets in packed granular beds. 

MICRON-SCALE INTERPARTICLE FORCES 

While airborne fines in living quarters span a wide size 
and shape range, for simplicity, we describe here model-
systems comprised of only spherical particles.  Nearly 
cylindrical fibers will have particle-particle contacts with 
similar behavior, while models for flat-plate-like particles 
may need additional terms to account for distributed 
contact areas.  (Arbitrary particle shapes could be 
simulated using artificially constructed sphere-clusters, 
or with other simple geometric shapes like cylindrical 
rods or circular plates made from annuli with planar 
‘lids’).   

PARTCULATE CLUSTER & BED BEHAVIOR – Fine 
particles in quiescent fluids or gases move by Brownian 
diffusion and randomly come in contact with other 
suspended particles.  Simulations of cluster formation 
and aggregation produce aggregates with very open 
structures, with low mass fractal dimension.  If particles 
‘stick’ upon first contact, then cluster growth is controlled 
by diffusion, and the resulting Diffusion Limited Cluster 
Aggregation (DLCA) model aggregates have mass-
fractal dimensions as low as 1.6, and may resemble the 
aggregate shown in Figure 1.  If particles have a low 
probability of sticking upon contact, but touch several 
times before establishing a permanent cohesive contact, 
then a Reaction Limited Cluster Aggregation (RLCA) 
model simulates the growth, and produces aggregates 
with mass fractal dimensions around 2.6 [Bushell, 2000], 
consistent with experimental measurements of 
aggregates formed in liquid suspensions or nano-scale 
aerosol aggregates formed in flames [Sorensen, 1998, & 
2001].  The gel points for such aggregates have solids 
fractions of 0.042 and 0.073 for DLCA and RLCA 
aggregates, respectively [Franks, 2002].  Sediment beds 
formed by gravity settling of aggregates start at solids 
fractions near the gel point, but consolidate further due 
to applied loads.  

               
Figure 1 – Simulated DLCA aggregate comprised of 
1200 spheres of two sizes [Bushell, 1998] 



Simulation models for the formation of DLCA and RLCA 
aggregates do not allow restructuring due to bending, 
rotation, or breaking of contacts once they are formed.  
Thus, while they can assist in predicting the gel point 
density, they are inappropriate for use in simulating the 
consolidation or redispersion of sediment beds. 

An example of cohesive powder bed compaction can be 
seen in the behavior of another model system.  In a 
recent study of cohesive powders, a suite of chemically 
identical powders with various mean particle sizes was 
obtained by spray drying aqueous solutions of raffinose 
of various concentrations [Miller, 2002].  Figure 2 shows 
an SEM micrograph of one of those powders after 
storage at 33% relative humidity, allowing formation of 
strong bonds at some contact points.  

          
Figure 2 – Amorphous raffinose powder spray dried from 
aqueous solution (1 wt% solids content) in a modified 
Buchi spray dryer [Miller et al. 2002]. 
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Figure 3 – Compaction of raffinose powder with volume 
median diameter of 0.8 micons [De Moor, 2003; Walton 
et al, 2003]. 

The compaction behavior of one of those raffinose 
powders, with a median size of 0.8 microns, is shown in 

cohesive powder is around 10% to start and is only 
about 25% with an applied load of 10kPa (~1.5psi).  This 
powder does not contain fibers like crew habitat dust; 
however, it is quite cohesive, and thus resists 
compaction under its own self weight, and yet, it is a 
very compressible bulk material.  The interparticle force 
model described in this paper is aimed at highly 
cohesive powders such as this; however, similar 
interparticle interaction models could be applied to dust 
aggregates and their collected ‘sediment’ beds. 

Figure 3.  Note that the solids fraction of this fine, 

COHESIVE FORCES MODELS IN DEM 

COHESION PLUS ELASTIC DEFORMATION (JKR) – 
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All materials exhibit van der Waals forces, which arise 
from effective induced dipoles in the outer electron 
shells of the surface atoms of each particle as the 
surfaces approach one another.  When the effects 
inverse sixth power, induced-dipole attraction of all 
surface atoms near the contact regions of two 
approaching spheres are taken into account (al
the attraction from any permanent polar orbitals), the 
resulting interparticle force-displacement relation take
on the form,   
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Individual particles may also carry a net charge, or even 

dispersive and polar surface energy per unit area), an
is the gap spacing between the centers of the surface 
atoms at the point of closest approach of the two 
spheres, and R is the radius of a spherical particle
radius of curvature at the point of contact for non-
spherical particles).  As the two particles make “co
the outer electron shells repel each other and keep the 
centers of the surface atoms on the two particles about 4
A
o
 apart in the area where they are “touching” one 

another.  Thus, since s never gets smaller than 4 A
o
 the 

gap spacing term, 1/s2, does not diverge to infinity at 
contact.  It should be noted that the van der Waals for
decreases quite rapidly as the gap between the surfaces 
widens.  When the surface to surface spacing between 
two spheres is 3.6nm, the spacing, s, between the 
centers of the surface atoms is 4nm (i.e., 3.6nm + 4    A

o
) 

and the attractive force is two orders of magnitude lowe
than its value when they were just “touching.”  

a distribution of positive and negative charges on their 
surfaces, which can contribute to long-range body forces 
between particles and with boundaries.  There is a high 
variability in the significance of static charge on particle 
behavior, because the level of charge and its leak-off 
rate are highly dependent on environmental conditions, 
such as humidity, and the past history of the particles.  
While static electric effects should not be ignored, the 
high uncertainty associated with charge levels makes it 
a difficult phenomena to deal with.  (Where charge 
buildup occurs in industry, remediation methods often 
focus on reducing sources of charge, or neutralizing 
charges on particles, such as by flooding a problem 



region with bi-polar ions).  Without in any way intending 
to dismiss the importance of static charge effects, we 
will, in this paper, only deal with those forces that are 
part of the inherent nature of the materials, and not 
something that they may or may not have acquired from 
their environment.  Thus, we will not attempt to model 
the effects of static charges on particles. 

A reasonable starting point for a cohesive force model 

(1a)

 (1b) 

here, a is the contact spot radius, Γ is the surface 

(2a) 

where R1 and  are the radii of the contacting bodies, E 

Figure 4 shows the force-displacement relations for a 

 .                               (3) 

for dry powders is the Johnson Kendall Roberts (JKR) 
model which includes both linear-elastic deformation in 
the contact region and surface energy [Johnson, 1971].  
The JKR model assumes that the interfacial forces have 
zero range before contact, and, in the usual application 
of the JKR model for cohesive contacts, the 
approximately 4nm range of those forces is, indeed, 
small compared to the other displacements involved.  In 
the JKR model the total force, P, acting between two 
contacting bodies and the relative displacement between 
them, α, are given by the following equations, 
 
   
 

 
 
w
energy per unit area, R* is the effective radius of the 
contacting bodies at the contact point, and E* is the 
effective modulus.  R* and E* are given by, 
 
 

and  

 (2b) 

R2

is Young’s modulus, and ν is the Poisson ratio. 

non-cohesive, elastic Hertzian contact [Hertz, 1882] and 
the JKR model.  Using this figure as a schematic we can 
describe salient features of the models.  As particles 
approach, we move along the horizontal axis towards 
the origin from the left, with zero force for either model.  
As the particles touch (and α becomes positive) the non-
cohesive Hertzian model gradually builds up a repulsive 
(positive) force that increases with the 3/2 power of α.  
When contact first occurs (at α = 0) in the JKR model, 
the surfaces snap together, with a net attractive force, 
going from the origin to point A.  Then as the particles 
continue to approach each other, the force moves to a 
net zero value at point B, and then becomes repulsive 
(e.g. in traversing the path to point D).  Upon unloading, 
the JKR force retraces from point D, through points B 
and A, and then continues (with negative α and negative 
force values) to points C and S, at which point the 
surfaces snap apart and the force returns to zero.  The 
distance from point  A  to  S  represents outward elastic 
deformation of the particle surfaces as the particles are 
pulled apart, but before final separation occurs. The 

minimum in the force-displacement relation corresponds 
to the pulloff force, Pc, is given by, 

*
2

 
Figure 4. Force displacement relations for cohesive JKR 

With no applied load the particles are ‘pulled’ together by 

                (4) 

he 

Shang [1998] simulated 20 µm, JKR spheres with 

 

model, and linear elastic Hertzian model [Mei, 2000]. 

the cohesive force causing some deformation in the 
contact region.  The point where the JKR curve crosses 
zero (point B) represents the equilibrium point with no 
applied loads.   If applied forces pull the contacting 
bodies apart, they adhere to one another, deforming the 
surfaces outward.  Final separation occurs at a 
displacement, αs, given by, 
 
 .       
 
T mathematical form of the force-displacement 
relation in the JKR model has been experimentally 
verified for macroscopic gelatin spheres [Johnson, 1985] 
and at the AFM (i.e., nanometer) scale [Burns et al, 
1999].   

tangential sliding friction, in DEM simulations of shearing 
flows using both Lees-Edwards (periodic) boundaries 
and Couette flow (real boundaries).  In the Couette flow 
simulations the particles formed a high density non-
shearing region, held together by the cohesive forces, 
and a low density rapidly shearing region where the 
kinetic energy of collisions was high enough to break up 
any aggregates that formed.  Solid fractions in the non-
shearing regions were in the range 0.45 to 0.55. 
Thornton [2001] has examined the breakup of large 
‘clusters,’ comprised of a few thousand cohesive JKR 
spheres, upon impact with a rigid wall.  His unconfined 
clusters had solids fractions greater than 0.45 as well.  
Thus, simply adding a cohesive interparticle force to a 
DEM simulation model is insufficient to produce the low 
bulk densities exhibited by real cohesive powders. 
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PLASTIC DEFORMATION AT CONTACT POINTS – 
The contact area predicted by Hertzian (linear-elastic) 
theory for contacts between smooth spheres, and for 
elastic JKR model spheres is usually quite small.  
Consequently, the total force is concentrated in such a 
small area that the stresses can exceed the elastic limit 
of the materials, even while the total force is quite low.  
Finite element calculations of the distribution of normal 
direction stress in the contact area, between perfectly 
elastic spheres, reproduce Hertz’ theoretical 
hemispherical shape.  If the peak normal stress exceeds 
1.6Y, where Y is the yield strength, then plastic 
deformation starts [Johnson, 1985].  Finite element 
calculations using an elastic-plastic material model show 
that the stress distribution flattens and covers a larger 
area than the Hertzian elastic model prediction.  Figure 5 
shows the stress distribution in the contact region 
between two spheres for both an elastic (Hertzian) and 
an elastic-plastic material model [Zhang, 2002]. 

 
Figure 5. Normal stress distribution for contact region of 
elastic (Hertz) contact, and for an elasto-plastic (FEM) 
contact with P ~ 40 PY [Zhang, 2002]. 
 
Careful examination of the physics involved with micron-
scale particles indicates that plastic deformation is likely 
at contacts between particles, even if no external loads 
are applied.  The normal force resisting the attraction 
between two JKR model spheres is given by the positive 
term in Equation (1a).  With no applied load, P is zero, 
and the two terms on the right hand side of Eqn. (1a) 
cancel.   At that point the repulsive force,  P0 = 6πΓR*,  is 
four times the pull off force, Pc.  This zero-applied-load 
repulsive force, P0, scales linearly with the particle size, 
while the load for onset of yield, PY, varies with the 
square of the particle size (Hertzian), 
 
 .                            (5) 

Thus, as particle size decreases, the value of P0 will 
exceed PY for all radii below some threshold radius, R0Y.  
Particles smaller than R0Y (or with a radius of curvature 
at the contact point less than R0Y) will experience plastic 
deformation at cohesive contacts with neighboring 

particles, simply due to the attractive forces (without any 
applied external loads).  Thus, we would expect to see 
plastic deformations at contacts for particles smaller 
than 5 to 50µm in diameter (the exact threshold size 
depends on the values of Γ, E, and Y).  

When the effects of plastic deformation, such as the 
flattening of the stress distribution and the widening of 
the contact area, are taken into account, it is observed 
that the plastically deformed contact region is ‘flattened,’ 
but is not truly flat.  Upon unloading, the region behaves 
like an elastic sphere with a larger radius.  As the 
effective radius of the ‘flattened’ area increases, the 
effective pull off force increases.  Thornton and Ning 
developed an approximate model for such adhesive 
elastic-plastic contacts, with force displacement curves 
as shown in Figure 6.   

 
Figure 6  Force-displacement for adhesive elastic-plastic 
contact model [Thornton, 1998] 

Like other cohesive DEM models  [Thornton, 1991, 
1993; Lian, 1993; Mei, 2000], Thornton’s adhesive 
elastic-plastic [1998] model did not include any bending 
or twisting resistance at the interparticle contacts, and 
thus, allowed free rotation and rolling to occur until 
particles acquired multiple contacts with neighboring 
particles to resist such deformation modes.  Simulations 
utilizing that model and other models have not produced 
the low bulk-densities exhibited by typical cohesive 
micron-scale powders under low loads.  Instead, 
discrete element simulations, utilizing almost any of the 
currently available models for frictional and cohesive 
interparticle interactions, have typically exhibited solids 
fractions higher than 0.45, even with no applied loads, 
and do not produce configurations that resemble the 
loose structure exhibited by fine cohesive powders at 
low stresses.  

NEW COHESION MODEL WITH BENDING 
MOMENTS 

A new model that includes cohesion coupled with 
rotational resistance to bending and twisting moments 
about contact points is under development.  The new 
contact model has four interrelated components 
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corresponding to modes of motion at the contact: 
normal, tangential, bending, and twisting.  Normal refers 
to motion in the direction of the surface normal at the 
center of the contact spot, or, for spherical particles, 
motion parallel to a line between the centers of two 
contacting spheres.  Tangential refers to relative sliding 
motion in the contact plane – a plane perpendicular to 
the surface normal.  Bending refers to relative 
displacement of the original center of the contact spot 
from the line between the centers of two contacting 
spheres (as would occur with any rolling motion of one 
sphere over the surface of the other).  Twisting refers to 
relative rotational motion about an axis parallel to the 
surface normal (or line between centers). 

Various analytical models for frictional and cemented 
contacts have included shear and twisting resistance at 
contacts (e.g., Dvorkin, 1991, 1994; Mindlin, 1949, 1953; 
Deresiewicz, 1954); however, because bending or rolling 
motion was not consistent with the axial symmetry 
assumed in those analyses, they ignored that mode of 
motion.  A few years ago the author of this paper 
developed a cemented contact model for DEM 
simulations of initially cemented soils and weak 
sandstone [Walton, 1996] that included both bending 
and twisting moments.  In that model a linear-elastic 
cylinder of cement was assumed to exist at contacts, 
within which, failure initiated whenever strains in 
extreme fibers on the periphery of the cement exceeded 
specified failure-threshold strains.  Bending and tension 
contributed to one failure strain threshold, while twisting 
and shear motions contributed to another failure 
threshold.  The new model for cohesive powders is 
adapted from the author’s previous cemented-contact 
model to conditions appropriate for micron-scale 
powders.  In the micron-scale case, no foreign material 
is introduced as cement between contacting particles.  
The resistance to bending and twisting moments arises 
directly from the nature of surface energy related 
cohesive forces and the elastic and plastic deformations 
of the particle surfaces. 

An outline of a first order form of the model proposed for 
interparticle contact forces and torques acting between 
cohesive spheres is presented below.  For most of the 
relations we also have non-linear equations that can be 
implemented, if warranted; however current efforts are 
focused on implementing, and testing, the coupled first-
order relations to see how closely they are able to mimic 
the compaction of the model powders.   

For two spheres, I and J, let Ri and Rj be the radii, vi and 
vj, the translational velocity vectors, ωi and ωj the 
rotational velocity vectors, ri and rj the radius vectors 
(i.e., lab frame coordinates) of the centers of the two 
spheres.  Then the unit vector in the direction of the 
surface normal (i.e., parallel to the line joining the sphere 
centers) , is given by, nû
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The relative velocity in the normal direction, vn, is given 
by, 
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by, 
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(The forces and moments resisting twisting and bending 
motions are ignored by most DEM simulation models).  
The incremental displacements in each direction can be 
obtained by integrating these relations.  In finite 
difference form the displacement relations are, 

 incremental normal displacement ∆n = vn∆t 

 incremental shear displacement ∆s = vs∆t, 

 incremental twisting displacement ∆φ = φ ∆t, &

 incremental bending displacement ∆θ = ∆t, θ&

where ∆t is the timestep.  In the following model 
description, the magnitudes of the various force or 
moment components depend on the magnitudes of 
these displacement vectors, and the symbol, α, is used 
for the magnitude of the relative normal-direction 
displacement. 
 
NORMAL FORCE MODEL (LINEARIZED FORM) – In 
the limiting case of fully plastic contacts the (repulsive) 
normal stress is nearly constant over a circular contact 
spot of radius, a, and the total (repulsive) normal force, 
FR, is just the product of the stress level, σp,  and the 
contact spot area,  FR = πσpa2,  where the plastic stress 
level is in the range 1.6Y < σp < 3Y , which we can 
approximate as a constant, σp ~ 2Y, and  the contact 
radius,    a ~           ,   where α  is the relative normal 
displacement.  Thus,  

FR = KRα,    where   KR ~ 2πYR. 

Upon unloading the elastic path can be approximated as 
a linear unloading curve with slope, K2, estimated from 
either the initial, or average, slope of a linear-elastic, i.e., 
Hertzian, unloading curve for a sphere with a radius that 
is approximately twice the original particle radius (thus, 
accounting for the flattening of the contact region).  
 
A cohesive (attractive) force term is added to the 
repulsive normal force term to obtain the total normal 
force.  Two forms of the cohesive force-displacement 
relation will be implemented; a constant attractive force 
(pulloff force), Fc0, and an attractive force level which 
increases linearly as the maximum compressive load 
experienced by the contact increases, Fc = Fc0 - cfFRmax.  
Here we illustrate only the constant attractive force 

αR



version.  Graphically the (linearized form of the) normal 
force model can be represented as, 

Normal Direction Force  =         inelastic repulsive    +    ~ constant cohesion

+Fo
rc

e
Displacement

Fo
rc

e

Displacement

= KR

Fc

K2

 

Two input quantities are required for this plastic-
cohesive model,  Fc, the pulloff force, and Y, the yield 
strength. In addition, a modified normal repulsive force 
stiffness, K’R = sfKR, scaled (by an empirical factor, sf) to 
account for the smaller average radii of plastically 
deforming asperities, may be used in place of the KR 
value determined strictly from the yield strength and the 
particle radius. 

For each of the other three displacement modes 
linearized forms of their force-displacement or moment-
angle relations are being implemented.  Later, if the 
simulation results indicate that important bulk behavior 
characteristics are sensitive to the slopes assumed in 
the linearized forms, then non-linear relations, such as 
the Mindlin-like friction model of Walton [1993b] may be 
added.  A mathematical form that resembles an elastic-
perfectly-plastic stress-strain relationship is used for 
each of the other modes of motion. 

TANGENTIAL (ADHESIVE-FRICTION) FORCE MODEL 
(LINEARIZED FORM) – The tangential force, Ff, 
increases linearly with relative tangential sliding 
displacement, ∆s, up to a maximum value, Fmax, 
determined by the coefficient of friction, µ.  The slope of 
the tangential force-displacement relation, Kf, will initially 
be assumed to be proportional to the slope of the 
repulsive normal force, KR.  (An alternative assumption 
of having the slope depend on the area of the contact 
spot, and thus on the value of the normal force will also 
be investigated).  In graphical form the tangential force 
model is, 

Tangential slip - ∆s

Friction limit, Fmax

Kf
Fmax = µFr ,          Kf ~ 0.8 KR

Friction

 

BENDING MOMENT (LINEARIZED FORM) – The 
assumed bending moment arises because, during a 
rolling motion, the contact region (or contact spot) is 
moving onto new surface regions of the particle.  As a 
crescent of new surface enters the contact spot at the 
front, a similar sized crescent of surface leaves the 
contact region at the back of the rolling contact.  On the 
front side of the rolling contact, the short range of the 
surface-energy based forces does not contribute to 
attraction until the surfaces are within a few nanometers 
of each other.  On the back side of the rolling contact the 

attractive forces displace the surfaces outward – holding 
them together longer than would be the case for 
undeformed spheres.  This asymmetry in the contact, 
arising from the short range nature of the surface energy 
forces, and the deformations of the surfaces, results in a 
small moment that scales with the radius of the contact 
spot and with the magnitude of the attractive normal 
force.  The radius of the contact spot will be estimated to 
be the size of the contact spot where the repulsive force 
equals the pull-off force, Fc, scaled by a factor to 
account for the probable condition that a real contact 
probably consists of several small asperities, instead of 
a smooth spherical surface.  Distributing the normal 
force over several asperities reduces the assumed slope 
of the normal force, KR, and also increases the effective 
width of the contact spot, , to   ba′

R
c

ffb K
RFbaba ′==′    , 

where bf is a scaling factor (adjustable) to account for 
the amount of broadening occurring at the contact 
because of asperities.  Graphically the bending moment 
model is, 
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TWISTING MOMENT (LINEARIZED FORM) – The 
twisting moment model is similar in form to the bending 
and friction models.  A non-linear form, similar to that of 
Deresievicz [1954], could also be implemented (and will 
be, if sensitivity tests show it is warranted).  In graphical 
form the twisting moment model is, 

Twist angle - φ

m
om

en
t Twist limit, Tmax

Kφ
Tmax = tf Bmax ,     0 < tf < 2 

Kφ = Kθ

Twisting

 

MODEL INPUT PARAMETERS – There are a small 
number of physical-property-based inputs for the new 
interparticle interaction model, namely, Fc, the pull off 
force, Y, the yield strength, µ the coefficient of friction, 
and the amount of flattening assumed for the unloading 
normal force curve.  In addition there are four empirical 
adjustment parameters that can be used to test the 
sensitivity of the bulk behavior of the powder assembly 
to the new features of the model.  These adjustment 
parameters are: 

• Buildup – a factor, cf, to allow the pull off to scale 
with the highest normal load experienced by 
contact 



• Soften – a factor, sf, to reduce the normal 
stiffness to account for asperity contacts 
(smaller radii) 

 
 

• Widen – a factor, bf, to expand the contact width 
and moments due to asperities (for bend & twist 
models) 

• Twist – a factor, tf, by which to scale bend model 
parameters to obtain the twist model values 

 
Various methods could be used to measure or estimate 
new model input parameters.  For example, the pull off 
force can be obtained from AFM measurements with a 
functionalized tip consisting of a single particle attached 
to the cantilever [Quintanilla et al, 2000] (see Figure 7). 

 
Figure 7. Experimental set-up for measurement of 
interparticle forces with an atomic force microscope 
and a typical load-unload curve [Quintanilla, 2000]. 

Measured values are typically a factor of 5 or so less 
than JKR predictions, and vary with surface roughness, 
indicating that surface asperities are at least as 
important a factor as the precise nature of the force-
displacement relation assumption.  Order of magnitude 
estimates of the pull off force could, also, be made from 
surface energy measurements (from inverse gas 
chromatography, for example).  The yield strength could 
be estimated from literature values, or, mico-indentor 
AFM measurements could be used (e.g., in the literature 
Y ~ 0.0035E for metals and Y ~ 0.01E for organics, 
where E is Young’s modulus).  The coefficient of friction 
can be measured for macroscopic samples; however, 
low stress compaction results are not expected to be 
sensitive to its value as long as it is greater than 0.1. 

The (linearized) cohesive force model, with bending 
moments, has a small number of input quantities based 
on measurable physical properties, and some additional 
adjustable factors that can be used to test sensitivity of 
simulated results to various model terms.  Comparisons 
with measured values for compaction and/or dispersion 
of cohesive powder beds are planned. 

THERMOMECHANICAL STRESSES IN PACKED 
GRANULAR BEDS 

On a completely different size scale than the cohesive 
force discussion above (i.e., millimeter instead of 
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Figure 8

micron), the behavior of packed granular beds is another
potentially fruitful applic
well as some measurements on bed properties.  Van der 
Waals cohesive forces between particles in the 
millimeter size range are usually completely 
overwhelmed by inertial, aerodynamic and/or even 
electrostatic forces.  Thus, no cohesive interaction force 
model is usually needed for simulations of packed beds 
of millimeter-scale pellets.  Improved boundary 
conditions, thermal expansion models, and new discrete 
(lumped parameter) heat transfer calculations could 
allow DEM models to provide useful insights on the 
thermomechanical stresses developed in thermally-
cycled packed beds. 

STRESSES IN PACKED BEDS – The potential effect of 
wall friction on stresses in packed granular beds is a 
phenomena that is often overlooked or poorly 
understood.  It can lead to extremely high stresses in the 
material, or can, as in the case 
[1895] analyzed, lead to much lower stresses than might 
be anticipated. Janssen utilized a differential-slice 
analysis to evaluate the horizontal and vertical stresses 
in granular materials inside storage silos and explained 
why most of the vertical load is transferred to the silo 
walls.  A similar analysis can be used to show why the 
force required for a piston to move a granular material 
up a vertical pipe increases exponentially with the height 
of the granular bed being pushed.   

Referring to Figure 8 and following the logic of Janssen 
we consider two cases: 1) gravity acting down with wall 
friction acting up, resisting the downward movement of 
the material (i.e., Janssen’s case); 
the slug up from the bottom with gravity acting 
and wall friction acting down.  The granular material is 
assumed to be in a vertical cylindrical container of 
radius, R, with a wall friction coefficient, µ (for friction 
between the granular material and the pipe wall).  A few 
simplifying assumptions are made: 

• The vertical stress is constant over a planar 
horizontal cross-section. 

• The ratio between the horizontal and the vertical 
stress within the slice is a constant, k = σh/σy. 

• The wall friction is ‘fully de
vertical stress at the wall σf = µσh, and acts in a 
direction to resist relativ
pipe wall and the granular material. 
The bulk density, ρ, of the granular material
essentially constant throughout the bed. 

Softer contact w/larger moment arm

1-spot n - asperities

Softer contact w/larger moment arm

1-spot n - asperities

 – Differential slice for force balance analysis. 

A vertical force balance analysis on the differential 
slice produces a first order, ordinary differential 

  

dy σx

σy 

σy+dy 

σh



equation for the vertical stress in the granular 
material (y is assumed to be zero at the top surface 
and increases with depth). 

 Force down = Force up 

      ρgπR2dy +σyπR2  = 2πRµσhdy + πR2σy+dy  

rearranging and simplifying: 

02
=−+

−+ ghydyy ρµσσσ  
Rdy

r, noting that σh = kσy, we obtain, o

02
=−+ g

R
k

dy
d

y
y ρσµσ  . (12) 

Janssen’s solution to this ODE is obtained if we assume 

 = 0). ress distribution solving 
that the stress, σy, is zero at the top free surface  (where 
y The resulting vertical st
Eqn (12) is, 

 ⎟⎟
⎠

⎞
⎜⎜
⎛

−=y
gRρσ 1

⎝

− y
Re

kµ2
 (13) 
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stored in a silo.  Note that as creases the expon
term vanishes, so that the maximum value of the vertical 
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where g = the acceleration of gra
known Janssen formula for vertica

y in ential 

stress in the material, 
k

gR
y µ

ρσ
2max = , scales with the 

radius of the silo, in contrast to pressure in a liquid which 
would scale linearly with the depth, and be independent 
of container radius.   

      
 Figure 9. Force on base pedestal as wall is 
pulled up as a function of bed height. Symbols – 3mm 
glass beads in 4cm acrylic pipe, Line – Equation (13), 
[Walton, 1999]. 

Equation (13) has been verified for static granular beds 
in silos many times during the past 100 years.  Students 
at the University of Florida verified it by placing various 
depths of 3mm glass beads in a 4cm diameter acrylic 
pipe with a slightly smaller diameter cylindrical pedestal 

the 

assumptions of 
the bottom 

The 

µk 
prediction of 

Eqn 

being 

under these 
ditions, 

simplifying as before: 

forming the base of the glass-bead bed.  The pipe was 
pulled up in an Instron universal test apparatus and 
force required to move the pipe recorded as a function of 
the bed height.  This setup replicates the 
Janssen’s silo analysis and the force on 
pedestal approached the Janssen asymptotic value 
when the bed height was a few pipe diameters.  
coefficient of friction and the ratio of axial to radial stress 
were not measured in these tests, so that the product 
became a fitting parameter for the Janssen 
vertical force.  Figure 9 shows the Janssen theory, 
(13), and the measured vertical load at the base. 

If we consider the case where the material is 
pushed up (as, for instance, by a piston) from the 
bottom, then friction acts in the opposite direction – 
resisting the upward motion.  The differential slice 
analysis and force balance can be repeated 
con

                Force down = Force up 

      ρgπR2dy +σyπR2 +2πRµσhdy = πR2σy+dy  

rearranging and 

                    0=−− g
Rdy y

y ρσ2 kd µσ  (14) 

again assuming σy = 0 at the top we obtain the solution 
for the vertical stress as a function of the bed height,  
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This time the exponent is positive, so we find stress 
increasing exponentially with the bed length being 
pushed up.  This result has been verified experimentally 
as well [Walton, 1999; Arroyo-Cetto, 2003]. When the 
4cm acrylic pipe wall containing beds of 3mm glass 
beads of various heights (described previously) was 
pushed down, the stationary pedestal acted as a piston 
pushing the beads up.  Figure 10 repeats the results of 
Fig 9 (wall up) and also shows force measurements 
when the pipe was moving down; except here the graph 
is semi-log with the force on the vertical (log) axis. 
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Figure 10 – Repeat of Fig (9) test plus pipe wall 
moving down data verifying the exponential form of 
Eqn (16).  The same µk = 0.232 value was used for 
both curves [Walton, 1999]. 

The value of µk = 0.232 from the Janssen (wall up) test, 
was used in Eqn 16 to obtain the wall-down line shown 
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in Fig 10.  The experimental results verify 
exponential form of the force vs. bed height relatio
of Eqn (16).  This also explains why it is nearly 
impossible to push a very long slug of granular mater
through a pipe unless something fails (e.g., either
pipe wall or the granular material).   

The relevance of these results to packed beds used fo
air revitalization, such as the Carbon Dioxide Rem
Apparatus (CDRA) aboard the ISS, can be illustrated by
considering an experiment described in Zen

the 
nship 

ial 
 the 

r 
oval 

 
z & 

Othmer’s [1960] text on fluidized beds.  
described by Zenz, a granular material is exposed to a 
condition (e.g. water) that causes it to expand.  
condition propagates slowly through the column causing 
the affected material behind the propagation 
expand (see Figure 11). The packed granular beds 
aboard the ISS undergo thermal cycling for 
regeneration, and during such cycles the material 
experience some thermal expansion.  The 
room for this expansion via movable lids that are spring 
loaded to maintain a low level of axial stress on the 
of 
expansion test, the experiment in Fig 11 demonstrates 
th r 
m  
v  would be expected if the 
material were heated from the top end (and the 

, so that additional 
axial loads will cause an increase in the radial stress.  In 

12, but with intercepts 
that could be near zero (Janssen’s assumption) or as 

In the test 

That 

front to 

will 
designs allow 

end 
the bed (e.g. see Figure 14).  Although not a thermal 

e effects observed when a packed bed of granula
aterial expands gradually from one end, inside a

ertical pipe.  Similar behavior

container had a lower thermal expansion coefficient than 
the granular bed material).  For this test, and the 
previously described piston pushing glass beads up a 
pipe, the initial stresses due to the gravitational field are 
very small compared to the loads eventually applied by 
the piston or by the ‘swelling’ material.  All that is 
necessary for the high stresses to develop is that 
sufficient axial stress exists, initially

the packed beds on the ISS the spring-loaded lids 
provide an initial axial load sufficient to ensure that 
stresses perpendicular to the axis will develop in the 
bed, and that wall friction can contribute to the overall 
stress state in the granular bed. 

The examples above illustrate some of the general 
trends observed in packed granular beds, however, a 
more complete characterization of granular bed 
properties would show that the material property 
assumptions in a Janssen-like theoretical analysis are 
not exactly followed, even by assemblies of mono-
disperse spheres.  For the same 3-mm glass beads 
described in tests of Figs (9) and (10), a short (3-cm tall) 
bed of beads was compressed between two pistons at 
various fixed loads, and the force required to move the 
surrounding pipe wall up and down measured.  Figure 
12 shows that while the value of µσr varied linearly with 
axial stress, σz, the line did not pass through the origin 
as would be the case if the material obeyed the 
assumptions of the analysis above.  The reason for the 
apparent ‘cohesive-like’ behavior is due to shear-dilatant 
forces which are a strong function of the packing fraction 
of the bed. Uniform sized spheres can be packed as 
dense as an fcc lattice with a solids fraction of 0.74 or as 

loose as a cubic lattice with a solids fraction of 0.524; 
however, a typical bed of spheres placed in a container, 
and tapped or vibrated to densify the bed, will arrive at 
random close packing with a solids fraction of about 
0.63.  In order to avoid shear dilatant effects upon 
deformation, a bed of uniform size spheres would need 
to be at or near the random loose packing limit of 0.58.  
We would expect glass beads initially consolidated to a 
different packing fractions to produce lines with slopes 
similar to that shown in Figure 

much as an order of magnitude higher. 

 
Figure 11 – “… illustrates the progress of an 
experiment in which water is poured on a bed of dry 
organic copolymer ion-exchange resin and allowed 
to permeate by gravity downward through the bed.  
After 14 min, when the water had trickled down 
through a wet-bed depth of 8 in, the glass column 
burst.  The dry solids below the interface between 
the wet resin and the dry resin constituted an 
effective piston, since they were so confined that 
they could not expand downward.  The upward force 
pushing against the wet bed was developed by 
wetting the dry resin particles at the interface and 
their consequent swelling.  At the moment of 
rupture, the wet-bed depth had exceeded the 
longest movable core of these resin particles in the 
0.707 in-diameter tube.   . . .” [Zenz, 1960, (p78-79)] 



 
Figure 12 – Variation of radial stress (times the friction 
coefficient) with axial stress in packed bead bed. 

Without cohesive forces, discrete element model (DEM) 
simulations of sphere packing is significantly denser 
than the low solids fractions observed for fine cohesive 
powders.  Figure 13 shows the results of DEM 
simulations of sphere-packing obtained by dropping 
smooth (i.e., frictionless) and frictional spheres into a 
rectangular region between two fixed vertical planes, 
spaced ten particle diameters apart.  The average solids 
fraction for the monodisperse smooth spheres is 0.63 – 
very nearly equal to random close packing for uniform 
sp
ap  
di t 
th  
pa

 

 

 

 

 

Figure 13

heres.  The solids fraction for the frictional spheres is 
proximately 0.57.  The graphs of the solids fraction

stributions across the widths of the cells, show tha
ere are significant ‘wall effects’ which extends several
rticle diameters into the sphere assemblies. 

 

 

 – Average solids fraction as a 
distance from the wall for (a) frictional 
frictionless spheres with a gap width of 10 sphere 
diameters [Walton, 1993a]. 

ets into 
a container under terrestrial conditions.  In the 

ed soils.  
Recent tests of pistons pushing bead-beds have shown 
that the forces can be as much as a factor of five higher 
when the packing fraction of the bead-bed is increased 
by  
Campbell has reported stress level increases in dense 
sheared granular flows of up to three orders of 

fraction of 
approximately 2% [Campbell, 2002]. 

function of 
and (b) 

The frictional-sphere case of Fig 13 is not unlike a 
typical granular bed which is filled by pouring pell

simulation, the packing ended up quite near the random-
loose-packing limit for uniform size spheres.  At this 

packing density the material is likely to behave like a 
normally-consolidated, or slightly under-consolidated, 
soil (i.e., it could shear at constant volume without 
producing high normal stresses).  The simulation of 
frictionless spheres, on the other hand, provides an 
indication of what density might be obtained if a bed of 
frictional spheres is subjected to vibration (momentarily 
lowering normal forces at contacts, and thus, effectively 
reducing contact friction forces) while in a gravitational 
field, or with a compressive load applied.  Any shear 
deformation of a bed of spheres at this packing is likely 
to produce very high normal stresses due to shear-
dilatant effects, typical of over-consolidat

as little as 3.5% [Arroyo-Cetto, et at., 2003]. 

magnitude resulting from an increase in solids 

The original designs of four packed pellet beds in the 
Carbon Dioxide Removal Apparatus (CDRA) aboard the 
ISS included spring-loaded lids intended to keep the 
pellets under a small confining load (and thus, prevent 
open channels from forming during gas flows under 
microgravity), (see Figure 14). 

 
Figure 14 – Examples of ISS – CDRA packed 
granular beds and a spring-loaded ‘floating-lid’. 

Problems eventually developed from pellet related fines 
in mechanical equipment (valves and seals) downstream 
from some of the beds.  Upon inspection (Jan 2003) 
after return to earth (Oct 2002) it was observed that 
larger-than-expected movements of the ‘floating’ plate 
lids had occurred in these beds.  One hypothesis for the 
large movement of the lids is that they occurred during 
the vibrations of the launch environment.  The lid 
displacements were sufficient to change the bulk 
packing fraction of the pellets in some of the beds by 
several percent.  Such changes in bed-packing can have 
a dramatic effect on stress generation in response to 
any bed deformation as described above. Thermo-
mechanical stresses might be significantly higher in a 
packed bed which has been vibrationally densified by a 
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few percent after initial filling, than they would have been 
if the bed had not experienced the increase in packing. 

The above hypotheses and other effects in thermally 
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to simulate the particle-scale restructuring that occurs 
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cycled packed beds could be explored calculationally via 
DEM simulations.  Stresses in packed beds with aspect 
ratios exceeding two, and subject to thermal expansion 
of the constituent bed particles, could be simulated with 
relatively straightforward modifications to currently 
existing DEM models.  If non-spherical particles (such as 

packed bed pellets) were to be simulated, then 
more extensive enhancements would be needed. 
Sphere clusters have been simulated by a 
researchers (e.g., Walton & Braun, 1993).  A relatively 

number of DEM codes have utilized more complex 
shapes (e.g., Hopkins, 1999); however, the numerical 
methods exist – only the implementation details are 
burdensome.   

transfer in packed beds is usually dominated by 
conduction in the interstitial gas.  The small 
area of contact between particles makes particle-particle 
heat transfer by conduction quite small.  At high 
the usual assumption is that most heat transfer 
radiative transfer.  However, since particle-particle 
conduction is a strong function of the contact area, 

e contact area depends strongly on the normal 
 the contact point, it is possible that thermally 

granular beds in high vacuum will have a significant 
particle-particle conductivity contribution to total heat 
transfer.  This hypothesis could be tested experimentally 
quite easily.  Also, if particle-particle conduction is 
contributing a significant role in the packed bed heat 
transfer, then an enhanced DEM heat transfer 
technique, based on a lumped-parameter model with  a 
stress-level-dependent ‘heat conduction’ through contact 
points (McCarthy, 2003), could be used to study the 
range of non-uniformities in temperature that might 
develop (because ‘stress trees’ in the bed might become 
high conductivity pathways). 

CONCLUSION 
For micron-scale particulate systems the inclusion of 
cohesion, along with realistic moment resistances at 
interparticle contacts, will allow discrete-particle models

when external loads and body forces are applied to 
loosely aggregated beds of cohesive powder particles.  
At the extreme of infinite resistance to bending, one 
would expect simulated aggregates to resemble those 
from cluster aggregation simulation models, which do 
not allow any restructuring once a contact is made.  It is 
expected that the cohesive force model described in this 
paper will be able to simulate aggregates with structures 
somewhat like that shown in Figure 1, except that the 
new model will allow such an aggregate to restructure 
(by rotating, twisting, or breaking of contacts) in 
response to applied loads or body forces.  Simulations of 
the detailed particle-scale rearrangements could provide 
insight into understanding, as well as adding the ability 

to predict, both the compaction and redispersive 
behavior of cohesive powders. 

On a millimeter scale DEM simulations might provide 
useful new insight into thermomechanical stresses in 
thermally cycled packed granular beds (especially if a 
lumped-parameter contact-load-dependent particle-
particle conduction model is implemented). 
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